

NESSteel Inc

83 Gerber Drive, Tolland, CT 06084

800-654-2901 • Fax: (860) 875-4900 sales@nessteel.com

High Toughness Steel AISI H-13

H-13 is an air- or oil-hardening tool steel noted for extreme toughness and good red-hardness. Typical analysis is shown in the chart below:

Carbon	Silicon	Manganese	Chromium	Malybdenum	Vanadium
0.37%	1.00%	0.35%	5.25%	1.30%	1.00%

H-13 is used mostly in hot tooling applications, although it is used in cold work applications where other steels tried have broken during use. Typical applications include:

- Aluminum Extrusion Dies
- Bending Dies
- Die Casting Dies
- Forging Dies
- Plastic Mold Dies
- Die Casting Inserts
- Hot Work Punches
- Extrusion Press Liners

Heat Treatment

Forging

- Preheat slowly to 1300° F until piece is thoroughly heated through, then increase heat to 1900°F -2050°F.
- DO NOT hot work H-13 below 1650°F.
- After forging, allow H-13 to cool slowly in insulating material or in a heated (1450°F) furnace.
- Anneal as soon as possible.

Annealing:

- Surface protection Anneal in controlled atmosphere furnace or pack in an inert material.
- Slowly heat H-13 to 1500° 1550°. Hold at temperature for 1½ hours per inch of maximum diameter or thickness. Cool slowly at a rate of 20° 30° per hour to 1200°F, remove from furnace and allow to air cool. Annealed hardness is 180 240 Brinell.
- Stress Relieving rough machine first, then anneal at 1150°F 1250°F. Hold at temperature for approximately 2 hours, cool in furnace to 925°F, remove and allow to air cool.

Hardening:

- Pack in inert material or use controlled atmosphere furnace to control decarburization.
- Pre-heat slowly to 1250°F 1350°F, and hold to equalize temperature throughout the piece.
- Increase heat rapidly to 1800°F-1900°F.
- Hold steel at temperature for one hour per inch of maximum thickness. Cool in still air or oil.
- Temper immediately after the piece has cooled to 150°F.

Tempering:

- Temper immediately when piece reaches 150°F or when comfortably hand-held.
- Temper at least 50°F higher than the expected maximum operating temperature of the tool.

Tempering Graph:

Physical & Mechanical Properties (approx):

Density, lb per cu in: .28Specific gravity: 7.77

Specific gravity:Critical points:

Heating (Ac) 100°/hr - begins 1580°F, ends 1640°F Cooling (Ar) 50°/hr - begins 1570°F, ends 1510°F

Mean Thermal Coefficient of Expansion:

Range °F	Coefficient x 10 ⁴ in /in /ºF	- Range, ⁰F	Coefficient x 10°, in /in /ºE
80-200	6.1	80–1450	7.5
80-400	6.4	500–1200	7.8
80-800	6.8	500-1450	8.0
80–1000	6.9	800–1200	8.1
80–1200	7.3	800–1450	8.2

Red Hardness

■ One inch dia. x 7/8" long samples, quenched in oil from 1850°F, tempered 2 hours, held at testing temperature for 30 minutes prior to test.

Tempering Temperature,	Rockwell C	Testing Temperature, °F	Brinell Hardness
800	53	800	496
900	53	900	475
1000	58.5	1000	419
1100	53	1100	350
1200	51	1200	139
1300	38	1300	69

Impact Strength (at room temp):

Fracture Toughness:

Dimensional Changes on Tempering:

Time Effect at Tempering Temperature:

